Finding the Impulse Response

Prof. Brian L. Evans
The University of Texas at Austin

Consider a causal linear time-invariant continuous-time system with input $x(t)$ and output $y(t)$ that is governed by a differential equation of the form

$$
y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=x^{\prime}(t)+x(t)
$$

Characteristic polynomial is $(\lambda+3)(\lambda+2)$, which leads to the characteristic modes

$$
y_{0}(t)=C_{1} \mathrm{e}^{-2 t}+C_{2} \mathrm{e}^{-3 t}
$$

By definition, the impulse response is the response of a system to an impulse. To find the impulse response from the differential equation governing the system, we set $x(t)=\delta(t)$:

$$
h^{\prime \prime}(t)+5 h^{\prime}(t)+6 h(t)=\delta(t)+\delta^{\prime}(t)
$$

We can see that impulsive events are occurring at the origin. The impulsive events will lead to a point of discontinuity in $h(t)$ at $t=0$ and likewise in $h^{\prime}(t)$ at $t=0$. The next step is to balance the impulsive events in the impulse response.

Because the system has linearity and time-invariance properties, the system must initially be at rest, i.e. $h\left(0^{-}\right)=0$ and $h^{\prime}\left(0^{-}\right)=0$. Let $h(0+)=K_{1}$ and $h^{\prime}(0+)=K_{2}$.

Note: Consider a causal signal $f(t)$ that has a point of discontinuity at the origin and the value of $f\left(0^{+}\right)$is K_{1}. An example would be $f(t)=K_{1} u(t)$, which has $f\left(0^{-}\right)=0$ and $f\left(0^{+}\right)=$ K_{1}. Hence, $f^{\prime}(t)=K_{1} \delta(t)$.

Let's try to find the first and second derivatives of the impulse response at $t=0$:

$$
\begin{aligned}
& h^{\prime}(0)=K_{1} \delta(t) \\
& h^{\prime \prime}(0)=K_{1} \delta^{\prime}(t)+K_{2} \delta(t)
\end{aligned}
$$

Note: The Dirac delta functional $\delta(t)$ is not defined at $t=0$. Hence, we have to keep the placeholder here.

Let's return to the earlier equation for the impulse response:

$$
h^{\prime \prime}(t)+5 h^{\prime}(t)+6 h(t)=\delta(t)+\delta^{\prime}(t)
$$

and analyze the impulse response at $t=0$:

$$
h^{\prime \prime}(0)+5 h^{\prime}(0)+6 h(0)=\delta(t)+\delta^{\prime}(t)
$$

By substituting for $h^{\prime}(0)$ and $h^{\prime \prime}(0)$,

$$
\left(K_{1} \delta^{\prime}(t)+K_{2} \delta(t)\right)+5\left(K_{1} \delta(t)\right)+6 h(0)=\delta(t)+\delta^{\prime}(t)
$$

By collecting terms, we have

$$
\left(K_{2}+5 K_{1}\right) \delta(t)+K_{1} \delta^{\prime}(t)+6 h(0)=\delta(t)+\delta^{\prime}(t)
$$

Note: We can define any value we would like to assign to $h(0)$ because $h(t)$ at $t=0$ is a point of discontinuity.

By balancing the Dirac delta terms and the first-derivative of the Dirac delta terms on the left and right hand sides of the equation, we obtain

$$
\begin{aligned}
& K_{1}=1 \\
& K_{2}+5 K_{1}=1 \quad \Rightarrow \quad K_{2}=-4
\end{aligned}
$$

Let's now return to solving for C_{1} and C_{2} from the characteristic modes

$$
\begin{aligned}
& h(0+)=-C_{1}-2 C_{2}=-1=K_{1} \\
& h^{\prime}(0+)=2 C_{1}+6 C_{2}=-4=K_{2}
\end{aligned}
$$

which means that $C_{1}=1$ and $C_{2}=-1$.
The solution for the impulse response is

$$
h(t)=\left[-\mathrm{e}^{-2 t}+2 \mathrm{e}^{-3 t}\right] u(t)
$$

